Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-{3-[(2-chloro-1,3-thiazol-5-yl)methyl]-4-nitroimino-1,3,5-triazinan-1yl}acetate

Chuan-wen Sun,* Jun Zhu, Jia Jin and Ding-rong Yang

College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China Correspondence e-mail: willin112@163.com

Received 11 April 2010; accepted 20 May 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.128; data-to-parameter ratio = 15.4.

In the title compound, $C_{11}H_{15}ClN_6O_4S$, which belongs to the neonicotinoid class of insecticidally active heterocyclic compounds, the six-membered triazine ring adopts an opened envolope conformation. The planar nitro imine group [dihedral angle between nitro and imine groups = 1.07 (7)°] and the thiazole ring are oriented at a dihedral angle of 69.62 (8)°. A classical intramolecular N-H···O hydrogen bond is found in the molecular structure. Moreover, one classical intermolecular N-H···O and C-H···N hydrogen bonds are also present in the crystal structure. Besides intermolecular hydrogen bonds, the Cl atom forms an intermolecular short contact [3.020 (2) Å] with one of the nitro O atoms.

Related literature

For general background to neonicotinoid compounds and their application as insecticides, see: Kagabu (1996); Kagabu *et al.* (2005); Tian *et al.* (2007); Tomizawa *et al.* (2000); Tomizawa & Yamamoto (1993); Zhang *et al.* (2004). For halogen bonding, see: Riley & Merz (2007). For the synthesis of the title compound, see: Maienfisch *et al.* (2001).

Experimental

Crystal data	
$C_{11}H_{15}CIN_6O_4S$	a = 8.5066 (6) Å
$M_r = 362.81$	b = 9.1114 (7) Å
Triclinic, $P\overline{1}$	c = 10.9071 (8) Å

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.857, T_{\rm max} = 0.925$

Refinement

_ . .

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.128$ S = 1.05 3259 reflections 212 parameters 9 restraints

Table T			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A···N6 ⁱ	0.79 (2)	2.55 (2)	3.133 (2)	132 (2)
N3-H3A···O3	0.79 (2)	1.98 (2)	2.570 (2)	131 (2)
$C3-H3C\cdots O3^{ii}$	0.97	2.57	3.191 (3)	122
$C5-H5A\cdots N1^{iii}$	0.97	2.61	3.449 (3)	144
$C6-H6B\cdots O4^{iv}$	0.97	2.56	3.478 (3)	159
$C10-H10\cdots O1^{v}$	0.93	2.45	3.278 (3)	149

Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y - 1, z; (iii) -x, -y + 2, -z + 1; (iv) -x + 1, -y + 2, -z + 1; (v) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

This work was supported by the Innovation Program of Shanghai Municipal Education Commission (Ssd08013 and 09YZ157) and the Leading Academic Discipline Project of Shanghai Normal University (DZL808). We are also grateful for the support from the Key Scientific and Technological Project of Shanghai Science and Technology Commission (0939191200).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2201).

References

- Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kagabu, S. (1996). J. Pestic. Sci. 21, 237-239.
- Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409–413.
- Maienfisch, P., Angst, M. & Brandl, F. (2001). Pest. Management Sci. 57, 906–913.

Riley, K. E. & Merz, K. M. Jr (2007). J. Phys. Chem. A, **111**, 1688–1694. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation

 $0.40 \times 0.23 \times 0.20$ mm

5350 measured reflections 3259 independent reflections

2670 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.40 \text{ mm}^-$

T = 298 K

 $R_{\rm int}=0.075$

refinement

 $\Delta \rho_{\rm max} = 0.31$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.26$ e Å⁻³

Tian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 143–147.

Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016–6024.

Tomizawa, M. & Yamamoto, I. (1993). J. Pestic. Sci. 18, 91–98. Zhang, N. J., Tomizawa, M. & Casida, J. E. (2004). J. Org. Chem. 69, 876–881. supplementary materials

Acta Cryst. (2010). E66, o1457-o1458 [doi:10.1107/S1600536810018878]

Ethyl 2-{3-[(2-chloro-1,3-thiazol-5-yl)methyl]-4-nitroimino-1,3,5-triazinan-1-yl}acetate

C. Sun, J. Zhu, J. Jin and D. Yang

Comment

Neonicotinoid compounds (Tomizawa & Yamamoto, 1993; Kagabu, 1996; Tomizawa *et al.*, 2000) have received much attention on their applications as insecticide (Zhang *et al.*, 2004; Kagabu *et al.*, 2005; Tian *et al.*, 2007). We report here the molecular and crystal structures of the title compound.

The molecular structure of title compound, $C_{11}H_{15}ClN_6O_4S$, is depicted on Fig.1. The triazine moiety exhibits an opened envolope conformation with N1 out of the envolope plan defined by C5, N3, C7, N2 and C6. The dihedral angle between the thiazole ring and triazine envolope plan is 75.63 (7)°. The planar nitroimine–group and the thiazole ring are oriented the dihedral angle of 69.62 (8)°. The large discrepancy between (O4—N5···N4 115.65 (17)°) and (O3—N5···N4 123.84 (16)°) bond angles attributes to the hydrogen bond effect on O4 and O3 - look the Table 1. Another interesting structure feature that should be mentioned is that the bond lengths (C7—N2 1.340 (2)Å) and (C7—N3 1.329 (2)Å) are between the standard (C—N 1.47Å) single bond and (C=N 1.26Å) double bond, clearly showing the conjugated effect of the nirtoimine. The C7—N4 bond length is as long as to 1.357 (2)Å, due to being linked with a strong electron–attracting nitro–group. Moreover, except intermolecular hydrogen bonding, the crystal structure is further stabilized by the so–called halogen bonding (Riley & Merz, 2007), due to short intermolecular contact of Cl1—O4ⁱ with a distance of 3.020 (2)Å and an angle close to 180° (C11—Cl1···O4ⁱ 178.1 (1)°). Symmetry code: (i) 1-*x*,1-*y*,-*z*).

Experimental

The title compound was prepared by the literature method (Maienfisch *et al.*, (2001). It was purified by silica gel chromatography using ethyl acetate and petroleum ether in the ratio of 1:1, as the flush to afford. This compound was obtained as white crystals, yield 46.7%, ¹H NMR(CDCl₃, 400 Hz): 9.51 (1*H*, s, NH), 7.44 (1*H*, s, thiazole—H), 4.61 (2*H*,s,CH₂—thiazole), 4.48–4.49(4*H*, d, J = 5.2 Hz, triazine—4H), 4.21–4.15 (2*H*, m, OCH₂), 3.32 (2*H*, s, CHC=O) 1.29–1.26 (3*H*, t, J = 7.2 Hz, CH₃); IR(potassium bromide, cm⁻¹) 3288(N—H), 3000 (thiazole), 1730 (C=O) 1587 (C=N), 1398 (NO₂), 1224 (C—O—C), 1105 (C—N), Anal. calcd for C₁₁H₁₅ClN₆O₄S: C 36.42, H 4.17, N 23.16; found C 36.40, H 4.23, N 23.19. ESI–MS m/z: 363.8.

Refinement

H atoms bonded to C atoms were positioned geometrically [C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl)] and refined in riding modes with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and methylene; $U_{iso}(H) = 1.5U \sim eq \sim (C)$ for methyl. H atom bonded to N atom was found from Fourier difference maps and refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$, but coordinates refined freely.

Figures

Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H–bond is marked by dashed line.

Ethyl 2-{3-[(2-chloro-1,3-thiazol-5-yl)methyl]- 4-nitroimino-1,3,5-triazinan-1-yl}acetate

Crystal data	
C ₁₁ H ₁₅ ClN ₆ O ₄ S	Z = 2
$M_r = 362.81$	F(000) = 376
Triclinic, PT	$D_{\rm x} = 1.505 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 449 K
a = 8.5066 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>b</i> = 9.1114 (7) Å	Cell parameters from 2512 reflections
c = 10.9071 (8) Å	$\theta = 2.3 - 28.2^{\circ}$
$\alpha = 100.488 \ (2)^{\circ}$	$\mu = 0.40 \text{ mm}^{-1}$
$\beta = 98.416 \ (3)^{\circ}$	T = 298 K
$\gamma = 101.281 \ (3)^{\circ}$	Block, colourless
$V = 800.55 (10) \text{ Å}^3$	$0.40 \times 0.23 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3259 independent reflections
Radiation source: fine focus sealed Siemens Mo tube	2670 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.075$
Detector resolution: 1.57×0.49 mm pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
0.3° wide ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$k = -10 \rightarrow 11$
$T_{\min} = 0.857, \ T_{\max} = 0.925$	$l = -13 \rightarrow 12$
5350 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.128$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0598P)^2 + 0.0779P]$

	where $P = (F_0^2 + 2F_c^2)/3$
3259 reflections	$(\Delta/\sigma)_{max} < 0.001$
212 parameters	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
9 restraints	$\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
-0.0095 (3)	0.7149 (2)	0.26414 (19)	0.0444 (5)
0.0880	0.7030	0.2309	0.053*
-0.0751	0.7574	0.2054	0.053*
-0.1049 (2)	0.5590 (2)	0.2702 (2)	0.0454 (5)
-0.2096 (4)	0.3054 (3)	0.1509 (3)	0.0701 (7)
-0.3189	0.3031	0.1674	0.084*
-0.1526	0.2605	0.2128	0.084*
-0.2173 (5)	0.2185 (3)	0.0216 (3)	0.0943 (11)
-0.2647	0.2692	-0.0391	0.141*
-0.2831	0.1169	0.0105	0.141*
-0.1091	0.2126	0.0092	0.141*
0.1108 (3)	0.9754 (2)	0.3748 (2)	0.0485 (5)
0.1225	1.0469	0.4549	0.058*
0.0397	1.0059	0.3108	0.058*
0.1510 (2)	0.7783 (2)	0.47718 (18)	0.0405 (4)
0.1079	0.6734	0.4825	0.049*
0.1619	0.8435	0.5603	0.049*
0.3648 (2)	0.88803 (19)	0.36999 (17)	0.0337 (4)
0.4008 (2)	0.6726 (2)	0.46817 (19)	0.0408 (4)
0.3775	0.6440	0.5462	0.049*
0.5174	0.7146	0.4805	0.049*
0.3537 (2)	0.5325 (2)	0.36264 (18)	0.0399 (4)
0.2576 (3)	0.3953 (2)	0.3607 (2)	0.0468 (5)
0.2113	0.3768	0.4302	0.056*
0.3072 (3)	0.3403 (2)	0.1709 (2)	0.0527 (6)
0.30601 (10)	0.23735 (8)	0.02224 (6)	0.0779 (3)
0.03775 (19)	0.82249 (18)	0.38653 (16)	0.0408 (4)
0.31341 (19)	0.79068 (17)	0.44198 (15)	0.0367 (4)
0.2716 (2)	0.98200 (18)	0.33909 (17)	0.0393 (4)
0.306 (3)	1.039 (3)	0.297 (2)	0.047*
0.50886 (19)	0.87424 (18)	0.33519 (16)	0.0402 (4)
0.5757 (2)	0.97002 (19)	0.26754 (16)	0.0430 (4)
0.2308 (2)	0.28347 (19)	0.25118 (19)	0.0544 (5)
	x -0.0095 (3) 0.0880 -0.0751 -0.1049 (2) -0.2096 (4) -0.3189 -0.1526 -0.2173 (5) -0.2647 -0.2831 -0.1091 0.1108 (3) 0.1225 0.0397 0.1510 (2) 0.1079 0.1619 0.3648 (2) 0.30775 0.5174 0.3537 (2) 0.2576 (3) 0.2113 0.3072 (3) 0.30601 (10) 0.3775 (19) 0.31341 (19) 0.2716 (2) 0.306 (3) 0.50886 (19) 0.5757 (2) 0.2308 (2)	x y $-0.0095(3)$ $0.7149(2)$ 0.0880 0.7030 -0.0751 0.7574 $-0.1049(2)$ $0.5590(2)$ $-0.2096(4)$ $0.3054(3)$ -0.3189 0.3031 -0.1526 0.2605 $-0.2173(5)$ $0.2185(3)$ -0.2647 0.2692 -0.2831 0.1169 -0.1091 0.2126 $0.1108(3)$ $0.9754(2)$ 0.1225 1.0469 0.0397 1.0059 $0.1510(2)$ $0.7783(2)$ 0.1619 0.8435 $0.3648(2)$ $0.6726(2)$ 0.3775 0.6440 0.5174 0.7146 $0.3537(2)$ $0.5325(2)$ $0.2576(3)$ $0.3953(2)$ 0.2113 0.3768 $0.3072(3)$ $0.3403(2)$ $0.30601(10)$ $0.23735(8)$ $0.31341(19)$ $0.79068(17)$ $0.2716(2)$ $0.97002(19)$ $0.2308(2)$ $0.28347(19)$	x y z -0.0095 (3) 0.7149 (2) 0.26414 (19) 0.0880 0.7030 0.2309 -0.0751 0.7574 0.2054 -0.1049 (2) 0.5590 (2) 0.2702 (2) -0.2096 (4) 0.3054 (3) 0.1509 (3) -0.3189 0.3031 0.1674 -0.1526 0.2605 0.2128 -0.2173 (5) 0.2185 (3) 0.0216 (3) -0.2647 0.2692 -0.0391 -0.2831 0.1169 0.0105 -0.1091 0.2126 0.0092 0.1108 (3) 0.9754 (2) 0.3748 (2) 0.1225 1.0469 0.4549 0.0397 1.0059 0.3108 0.1510 (2) 0.7783 (2) 0.47718 (18) 0.1619 0.8435 0.5603 0.3648 (2) 0.88803 (19) 0.36999 (17) 0.4008 (2) 0.6726 (2) 0.46817 (19) 0.3775 0.6440 0.5462 0.5174 0.7146 0.4805 0.2576 (3)

supplementary materials

01	-0.1559 (2)	0.52487 (19)	0.36034 (15)	0.0659 (5)
O2	-0.1227 (2)	0.46316 (17)	0.16030 (15)	0.0614 (4)
O3	0.5158 (2)	1.0752 (2)	0.23700 (19)	0.0671 (5)
O4	0.70673 (19)	0.95104 (19)	0.23875 (17)	0.0607 (4)
S1	0.41711 (8)	0.52681 (6)	0.21876 (5)	0.0532 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0449 (11)	0.0457 (11)	0.0389 (10)	0.0019 (9)	0.0037 (9)	0.0122 (9)
C2	0.0434 (11)	0.0495 (12)	0.0386 (11)	0.0005 (9)	0.0066 (9)	0.0095 (9)
C3	0.0903 (19)	0.0483 (12)	0.0592 (14)	-0.0107 (12)	0.0183 (13)	0.0055 (11)
C4	0.144 (3)	0.0561 (15)	0.0660 (17)	-0.0045 (17)	0.0236 (19)	-0.0031 (12)
C5	0.0451 (11)	0.0377 (10)	0.0671 (14)	0.0144 (8)	0.0191 (10)	0.0106 (10)
C6	0.0430 (10)	0.0429 (10)	0.0331 (10)	0.0067 (8)	0.0087 (8)	0.0037 (8)
C7	0.0379 (9)	0.0256 (8)	0.0336 (9)	0.0057 (7)	0.0040 (7)	-0.0001 (7)
C8	0.0473 (11)	0.0370 (10)	0.0389 (10)	0.0130 (8)	0.0030 (8)	0.0106 (8)
C9	0.0479 (11)	0.0363 (10)	0.0398 (10)	0.0176 (8)	0.0065 (8)	0.0118 (8)
C10	0.0590 (13)	0.0391 (11)	0.0460 (12)	0.0163 (9)	0.0105 (10)	0.0122 (9)
C11	0.0731 (15)	0.0436 (11)	0.0427 (11)	0.0274 (10)	0.0013 (11)	0.0048 (10)
Cl1	0.1162 (6)	0.0694 (4)	0.0455 (3)	0.0420 (4)	0.0031 (3)	-0.0065 (3)
N1	0.0398 (9)	0.0382 (8)	0.0447 (9)	0.0101 (7)	0.0090 (7)	0.0074 (7)
N2	0.0405 (8)	0.0318 (8)	0.0385 (8)	0.0098 (6)	0.0071 (7)	0.0080 (7)
N3	0.0416 (9)	0.0306 (8)	0.0499 (10)	0.0112 (6)	0.0133 (7)	0.0124 (7)
N4	0.0375 (8)	0.0364 (8)	0.0468 (9)	0.0082 (6)	0.0106 (7)	0.0075 (7)
N5	0.0401 (9)	0.0421 (9)	0.0407 (9)	0.0023 (7)	0.0079 (7)	0.0009 (7)
N6	0.0704 (12)	0.0356 (9)	0.0545 (11)	0.0156 (8)	0.0039 (10)	0.0053 (8)
01	0.0766 (11)	0.0650 (10)	0.0453 (9)	-0.0146 (8)	0.0207 (8)	0.0100 (8)
02	0.0806 (11)	0.0484 (9)	0.0455 (9)	-0.0096 (8)	0.0202 (8)	0.0055 (7)
03	0.0612 (10)	0.0647 (11)	0.0929 (14)	0.0183 (8)	0.0302 (9)	0.0448 (10)
O4	0.0468 (9)	0.0706 (11)	0.0654 (10)	0.0116 (7)	0.0249 (8)	0.0070 (8)
S1	0.0731 (4)	0.0452 (3)	0.0456 (3)	0.0181 (3)	0.0187 (3)	0.0098 (2)

Geometric parameters (Å, °)

1.455 (3)	С6—Н6В	0.9700
1.510 (3)	C7—N3	1.329 (2)
0.9700	C7—N2	1.340 (2)
0.9700	C7—N4	1.357 (2)
1.198 (2)	C8—N2	1.468 (2)
1.318 (3)	C8—C9	1.498 (3)
1.460 (3)	C8—H8A	0.9700
1.472 (4)	C8—H8B	0.9700
0.9700	C9—C10	1.348 (3)
0.9700	C9—S1	1.728 (2)
0.9600	C10—N6	1.380 (3)
0.9600	C10—H10	0.9300
0.9600	C11—N6	1.287 (3)
1.447 (2)	C11—S1	1.717 (2)
	1.455 (3) 1.510 (3) 0.9700 0.9700 1.198 (2) 1.318 (3) 1.460 (3) 1.472 (4) 0.9700 0.9700 0.9600 0.9600 0.9600 1.447 (2)	1.455(3)C6—H6B $1.510(3)$ C7—N3 0.9700 C7—N2 0.9700 C7—N4 $1.198(2)$ C8—N2 $1.318(3)$ C8—C9 $1.460(3)$ C8—H8A $1.472(4)$ C8—H8B 0.9700 C9—C10 0.9700 C9—S1 0.9600 C10—N6 0.9600 C11—N6 $1.447(2)$ C11—S1

C5—N3	1.469 (3)	C11—Cl1	1.717 (2)
С5—Н5А	0.9700	N3—H3A	0.79 (2)
С5—Н5В	0.9700	N4—N5	1.339 (2)
C6—N1	1.444 (3)	N5—O4	1.237 (2)
C6—N2	1.476 (2)	N5—O3	1.243 (2)
С6—Н6А	0.9700		
N1—C1—C2	113.48 (16)	N3—C7—N4	127.89 (17)
N1—C1—H1A	108.9	N2	113.62 (16)
C2—C1—H1A	108.9	N2—C8—C9	112.19 (16)
N1—C1—H1B	108.9	N2—C8—H8A	109.2
C2—C1—H1B	108.9	С9—С8—Н8А	109.2
H1A—C1—H1B	107.7	N2—C8—H8B	109.2
01	124.32 (19)	C9—C8—H8B	109.2
01 - C2 - C1	126.2.(2)	H8A—C8—H8B	107.9
$0^{2}-C^{2}-C^{1}$	109.47(17)	C10-C9-C8	127.86 (19)
02 - 02 - 01	108.0(2)	C10-C9-S1	109 13 (15)
02 - 03 - H3C	110.1	$C_{8}^{0} = C_{9}^{0} = S_{1}^{1}$	109.13(13) 123.00(14)
$C_1 = C_2 = C_3 = C_1 = C_2$	110.1	$C_{0} = C_{10} = S_{10}$	123.00(14)
$C_4 = C_5 = H_3 P$	110.1	$C_{9} = C_{10} = N_{0}$	117.05 (19)
$C_2 = C_3 = H_3 B$	110.1	C9—C10—H10	121.5
	110.1	N6-C10-H10	121.5
$H_3C - C_3 - H_3B$	108.4	N6-CII-SI	117.24 (17)
C3—C4—H4A	109.5	N6—CII—CII	123.01 (18)
C3—C4—H4B	109.5	SI-CII-CII	119.74 (15)
H4A—C4—H4B	109.5	C6—N1—C5	107.68 (16)
C3—C4—H4C	109.5	C6—N1—C1	113.41 (16)
H4A—C4—H4C	109.5	C5—N1—C1	111.93 (16)
H4B—C4—H4C	109.5	C7—N2—C8	121.33 (16)
N1—C5—N3	111.07 (15)	C7—N2—C6	120.93 (15)
N1—C5—H5A	109.4	C8—N2—C6	116.72 (15)
N3—C5—H5A	109.4	C7—N3—C5	122.00 (17)
N1—C5—H5B	109.4	C7—N3—H3A	115.8 (16)
N3—C5—H5B	109.4	C5—N3—H3A	122.2 (16)
H5A—C5—H5B	108.0	N5—N4—C7	118.95 (16)
N1—C6—N2	112.02 (15)	O4—N5—O3	120.48 (17)
N1—C6—H6A	109.2	O4—N5—N4	115.65 (17)
N2—C6—H6A	109.2	O3—N5—N4	123.84 (16)
N1—C6—H6B	109.2	C11—N6—C10	108.32 (18)
N2—C6—H6B	109.2	C2—O2—C3	116.56 (17)
Н6А—С6—Н6В	107.9	C11—S1—C9	88.24 (10)
N3—C7—N2	118.48 (17)		
N1-C1-C2-01	7.9 (3)	N1—C6—N2—C8	-143.03 (17)
N1—C1—C2—O2	-171.21 (18)	N2—C7—N3—C5	-3.8 (3)
N2-C8-C9-C10	-105.2 (2)	N4—C7—N3—C5	174.62 (18)
N2-C8-C9-S1	73.8 (2)	N1—C5—N3—C7	-28.0 (3)
C8—C9—C10—N6	179.47 (18)	N3—C7—N4—N5	4.3 (3)
S1—C9—C10—N6	0.3 (2)	N2—C7—N4—N5	-177.22 (16)
N2-C6-N1-C5	-55.1 (2)	C7—N4—N5—O4	-179.85 (17)
N2—C6—N1—C1	69.28 (19)	C7—N4—N5—O3	2.1 (3)
			- (-)

supplementary materials

N3—C5—N1—C6	56.0 (2)	S1—C11—N6—C10	0.8 (2)
N3—C5—N1—C1	-69.3 (2)	Cl1—C11—N6—C10	179.62 (16)
C2-C1-N1-C6	65.1 (2)	C9—C10—N6—C11	-0.7 (3)
C2-C1-N1-C5	-172.82 (16)	O1—C2—O2—C3	-0.5 (4)
N3—C7—N2—C8	173.29 (16)	C1—C2—O2—C3	178.7 (2)
N4—C7—N2—C8	-5.4 (2)	C4—C3—O2—C2	179.5 (2)
N3—C7—N2—C6	5.2 (3)	N6-C11-S1-C9	-0.57 (19)
N4—C7—N2—C6	-173.49 (16)	Cl1—C11—S1—C9	-179.41 (14)
C9—C8—N2—C7	-82.8 (2)	C10-C9-S1-C11	0.11 (16)
C9—C8—N2—C6	85.8 (2)	C8—C9—S1—C11	-179.09 (17)
N1—C6—N2—C7	25.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N3—H3A····N6 ⁱ	0.79 (2)	2.55 (2)	3.133 (2)	132 (2)
N3—H3A…O3	0.79 (2)	1.98 (2)	2.570 (2)	131 (2)
C3—H3C···O3 ⁱⁱ	0.97	2.57	3.191 (3)	122.
C5—H5A…N1 ⁱⁱⁱ	0.97	2.61	3.449 (3)	144.
C6—H6B····O4 ^{iv}	0.97	2.56	3.478 (3)	159.
C10—H10…O1 ^v	0.93	2.45	3.278 (3)	149.

Symmetry codes: (i) x, y+1, z; (ii) x-1, y-1, z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1.

